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ABSTRACT: We reported the favorable cathode buffer layer based on a blend
of ZnO nanoparticles (NPs) and TiO2 nanorods (NRs) applied to inverted
solar cells. In addition to the high optical transmittance, the resultant blend film
gave a relatively dense film with lower roughness than that of the respective
single-component film. This improved the interface contact between the buffer
layer and photoactive layer and therefore reduced the contact resistance and
leakage current. Moreover, the combination of NRs and NPs increased the
efficiency of electron transport and collection by providing both a direct path for
electron transport from TiO2 NRs and a large contact area between ZnO NPs
and the active layer. Consequently, both the short-circuit current density (Jsc)
and fill factor (FF) in the device were improved, leading to an improvement of
the device performance. The best power conversion efficiency (PCE) based on
the blend film as the buffer layer reached 8.82%, which was preferable to those
of a single ZnO NP film (7.76%) and a TiO2 NR-based device (7.66%).
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1. INTRODUCTION

In the last decades, polymer solar cells (PSCs) have been a hot
research topic because of their promising advantages such as
low cost, flexibility, and light weight compared with conven-
tional silicon-based solar cells.1−3 The first bulk-heterojunction
PSCs were successfully realized in 1995 by the Heeger group
and gave a power conversion efficiency (PCE) of 2.9%.4 With
the development of new donor and acceptor materials and
advanced processing techniques flocking in, PSCs with PCEs of
7−9% based on poly(3,4-ethylenedioxythiophene):poly-
(styrenesulfonate) (PEDOT:PSS) as the hole-transport layer
have been documented.5−8 In the meantime, the erosion of
indium−tin oxide (ITO) by acidic PEDOT:PSS and oxidation
of an air-sensitive, low-work-function metal cathode become
the main factors to influence the long lifetime stability in
photovoltaic devices.9−11 Hence, in addition to increasing PCE,
further efforts should be made to improve the device stability.
To solve this issue, one strategy is to use an inverted device

architecture. Since the first example reported in 2006,12,13 the
inverted device structure has been extensively studied. So far,
PCEs as high as 9.2% have been achieved.14−16 In an inverted
structure, the top electrode, composed of a high-work-function
transition-metal oxide (NiO, MoO3, V2O5, and WO3) layer and
a high-work-function metal electrode (Au and Ag), is used to
collect the holes.17−19 Meanwhile, the ITO electrode is

modified with a thin film of n-type material such as cesium
carbonate (Cs2CO3),

20 zinc oxide (ZnO),13,21 and titanium
oxide (TiO2 and TiOx)

22,23 as hole-blocking and electron-
transport layers (ETLs), which could functionalize the work-
function of the ITO electrode. In this way, PEDOT:PSS is
replaceable, and new interfacial materials can improve the
device stability.
The cathode buffer layer on the ITO electrode is one of the

key components of the inverted architecture. Several criteria
should be met to obtain a favorable cathode buffer layer for an
efficient photovoltaic device, such as good transparency, high
electron mobility, favorable morphology, and high electron
affinity to collect the electrons. Among n-type metal oxides,
ZnO and TiO2 nanoparticles (NPs) have drawn more attention
because of their good transparency, environmental stability,
simplicity of process, and low crystallization temperature.21,24

However, the ZnO NP film presents apparent surface defects
due to aggregations, leading to poor electronic coupling and
severe back charge recombination.25,26 Meanwhile, TiO2 NPs
possess wide band gap (3.2 eV) and low electron mobility
(10−5 cm2 V−1 S−1).27 One-dimensional TiO2 nanorods (NRs)

Received: December 6, 2013
Accepted: March 7, 2014
Published: March 7, 2014

Research Article

www.acsami.org

© 2014 American Chemical Society 4074 dx.doi.org/10.1021/am405622q | ACS Appl. Mater. Interfaces 2014, 6, 4074−4080

www.acsami.org


support a direct pathway to facilitate electron transport, which
has been used in hybrid solar cell investigation.28−30 However,
its relatively low surface-to-volume ratio decreases the contact
area and influences electron collection in the photovoltaic
device.31,32 Different methods have been used to address these
issues such as doping with metals,22,33 use of composite
materials,34 incorporation of fullerene derivatives,25,35−39 and
use of hybrids with conjugated molecules.26,40−43 Those help to
improve the contact quality and modify the work function of
metal oxides, further increasing the performance of organic
solar cells. In comparison, few studies have worked on the
combination of metal oxide nanomaterials with various shapes
and sizes as a buffer layer in solar cells.44−46

In this study, the blend films of ZnO NPs and TiO2 NRs
were embedded in a cathode buffer layer of inverted PSCs. The
photoactive materials involved were poly[[4,8-bis[(2-
ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-flu-
oro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]]
(PTB7) as the electron donor and [6,6]phenyl-C71-butyric
acid methyl ester (PC71BM) as the electron acceptor. We
successfully demonstrated highly efficient PSCs with an average
PCE of 8.58% under simulated solar illumination (AM 1.5G
100 mW cm−2), which was increased by 15.6% and 12.6% in
comparison with those of devices based solely on the ZnO NP
film (7.42%) and TiO2 NR film (7.62%), respectively. To
understand the efficiency enhancement, the optical property,
surface morphology, composition structure, energy-level
property, and electrical properties of the blend film were
investigated by multiple measurements such as UV−vis
absorption, scanning electron microscopy (SEM), atomic
force microscopy (AFM), X-ray photoelectron spectroscopy
(XPS), and ultraviolet photoelectron spectroscopy (UPS). The
results showed that the interfacial blend film possesses
favorable optoelectronic properties and superior film morphol-
ogy, which improve interfacial contact to facilitate charge
collection.

2. EXPERIMENTAL SECTION
Reagent and Materials. Indium−tin oxide (ITO)-coated glass

substrates were purchased from CSG Holding Co., Ltd. (China; Rs ≤
10 Ω/□; Tr ≥ 83%). Electron-donor material PTB7 was purchased
from 1-material Chemscitech, and electron-acceptor PC71BM was
purchased from Nano-C. MoO3 was obtained from Alfa Aesar.
Chlorobenzene was provided by Sigma-Aldrich. In addition, zinc
acetate dihydrate [Zn(Ac)2·2H2O], potassium hydroxide (KOH),
methanol, and chloroform were purchased from Sinopharm Chemical
Reagent Co. and used as received.
Preparation of ZnO NPs. ZnO NPs were prepared according to

the procedures.47,48 We used chloroform (5 mL) to dissolve the NPs
to obtain a solution with a concentration of 70 mg mL−1 on average.
Then the concentration of 15 mg mL−1 ZnO was obtained by dilution
of the original solution with chloroform and a small amount methanol
(10 vol %).
Preparation of TiO2 NRs. TiO2 NRs were fabricated following the

process reported by Weller et al.49 The as-synthesized TiO2 NRs were
usually capped with a long-chain ligand of oleic acid (OA), which
suppressed charge transfer. Hence, OA of TiO2 NRs was removed by
ligand exchange with pyridine, according to the literature.50 Finally,
TiO2 NRs were dissolved in chloroform with a concentration of 20 mg
mL−1.
Preparation of Cathode Buffer Layers. The blend solutions of

ZnO NPs and TiO2 NRs with different weight ratios were prepared by
mixing the respective solutions of ZnO NPs (15 mg mL−1) and TiO2
NRs (20 mg mL−1), and the total concentration was 15 mg mL−1.

Device Fabrication and Characterization. The devices were
fabricated on ITO-coated glass substrates cleaned with a sequence of
detergent, deionized water, acetone, and isopropyl alcohol for 15 min
in an ultrasonic bath, dried with a nitrogen stream, and subsequently
treated with UV−ozone for 30 min. The ZnO NP solution, TiO2 NR
solution, and mixed solution were spin-coated onto the ITO
substrates, respectively. Then the ZnO NP and TiO2 NR films were
annealed at 80 and 150 °C for 10 min, respectively. The blend film was
treated at different annealing temperatures (80, 120, 150, and 200 °C)
for 10 min to figure out the optimal conditions. The favorable
thickness for the blend film was tested as 45 nm. The blend solution of
PTB7:PC71BM (10:15 weight ratio) in chlorobenzene was then spin-
coated at 1500 rpm for 120 s on top of the buffer layers. Finally, device
fabrication was finished by thermal evaporation of 10 nm of MoO3 and
100 nm of Al under a vacuum of about 1 × 10−6 mbar, and the device
area was 0.04 cm2. J−V characterization was done using a Keithley
2400 source measure unit under AM 1.5G simulated solar
illumination.

Cathode Buffer Layer Characterization. Optical transmittance
spectra were recorded using a UV-3300 spectrophotometer. The
surface morphology and film roughness of the specimens were tested
by SEM and AFM. SEM (S-4800) measurements were done at an
acceleration voltage of 8 kV. AFM measurements were done in tapping
mode using a Veeco dimension V atomic force microscope. XPS and
UPS spectra were taken with a Kratos AXIS ULTRADLD UPS/XPS
system (Kratos Analytical, Manchester, U.K.).

3. RESULTS AND DISCUSSION
Figure 1 shows the structures of PTB7 and PC71BM, as well as
an inverted device structure. The interfacial blend film was

obtained by spin-coating the mixed solution of ZnO NPs and
TiO2 NRs onto the ITO electrode. The energy-level diagram of
the materials involved in the device is depicted in Figure 1c.
The lowest unoccupied molecular orbital (LUMO) and highest
occupied molecular orbital (HOMO) energy levels of PTB7
and PC71BM were taken from the literature.16,51 The energy
levels of ZnO NPs and TiO2 NRs were measured by UPS and
UV absorption edge. It is obvious that the conduction band

Figure 1. (a) Structures of PTB7 and PC71BM. (b) Device structure of
inverted PSCs with blend films of ZnO NPs and TiO2 NRs as the
cathode buffer layer. (c) Corresponding energy-level diagram of each
component of the device.
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(CB) of TiO2 is very close to the LUMO of PC71BM and the
CB of ZnO, which indicates that electrons can be easily
transferred to the ITO electrode through the blend buffer layer.
Moreover, the valence bands of ZnO (−7.6 eV) and TiO2
(−7.26 eV) are lower than the HOMO levels of PTB7 (−5.15
eV) and PC71BM (−5.87 eV), which block hole transport from
PTB7 to the ITO electrode. Thus, from the viewpoint of
energy levels, photogenerated carriers can efficiently transport
electrodes without significant interfacial energy loss.
The crystallinity of the blend film was investigated by X-ray

diffraction (XRD), and the results are shown in Figure 2a. The
typical XRD patterns of the blend film confirmed the existence
of wurtzite-type ZnO and anatase-type TiO2 crystalline phases,
which is in good agreement with the previously reported
results.48,49 No other crystalline phase was found in the XRD
pattern, indicating that the matrix is a physical mixture of ZnO
NPs and TiO2 NRs. In addition, XPS data are presented in
Figure S1 in the Supporting Information (SI). The spectra
further gave proof of the existence of ZnO NPs and TiO2 NRs
in the blend film. In inverted solar cells, high transparency was
required for the cathode buffer layer. Figure 2b compares the
UV−vis transmittance spectra (300−900 nm) of the ZnO NP,
TiO2 NR, and ZnO/TiO2 blend films on quartz substrates. It is
apparent that the three films have high optical transmittance,
which is suitable for the buffer layer in organic solar cell. The
transmittance near 100% in the wavelength region of 400−900
nm means that light absorption for the photoactive layer can be
retained. In the short-wavelength region, the blend film showed
partial absorption because of the wide band gap. The
operational stability of PSCs could be improved by absorbing
ultraviolet light, which usually gives rise to photodegradation of
organic materials.52

In addition to transmittance, the morphology of the buffer
layer is very crucial for the interfacial electrical property.53,54

The surface morphologies of the films were investigated by
tapping-mode AFM and SEM. Parts a−c of Figure 3 present
the AFM images of the ZnO NP, TiO2 NR, and blend films,
respectively. The root-mean-square roughness of the three films
was calculated as 12.6, 6.58, and 5.42 nm, respectively. The
blend film showed the smoothest surface among the three films.
This means that the blend film obtained good contact quality
with the PTB7:PC71BM active layer and decreased the contact
resistance so as to improve charge collection more effectively.55

SEM images were employed to further investigate the surface
morphology of the three films. In Figure 3d, the ZnO NP film
is composed of NPs that possess a high surface-to-volume ratio
and increased contact area with the photoactive layer so as to
improve the electron collection efficiency. However, ZnO NPs
easily form aggregations. Many voids are found on the surface

in the images. The aggregations are thought to be the origin of
high roughness. Figure 3e shows the surface morphology of the
TiO2 NR film, and some voids exist on the surface similar to
the ZnO NP film. The blend film composed of ZnO NPs and
TiO2 NRs gives the best surface morphology among the three
films. It presents relatively compact film morphology and gives
the fewest surface voids. According to the literature, the leakage
current is caused by voids of the buffer layer in the devices.26

So, the blend film shows favorable interface properties for
photovoltaic applications.
The current density−voltage (J−V) characteristics under AM

1.5G irradiation (100 mW cm−2) of inverted PTB7:PC71BM
solar cells with different electron-transport layers were
investigated and are shown in Figure 4. The extracted device
parameters, as well as the series resistance (Rs) and shunt
resistance (Rsh) of all of the devices, are summarized in Table 1.
The device based on a ZnO NP cathode buffer layer gave a
typical open-circuit voltage (Voc) of 0.732 V, Jsc of 15.27 mA

Figure 2. (a) XRD pattern for the ZnO/TiO2 blend film after annealing at 120 °C for 10 min. (b) UV−vis transmittance spectra of the ZnO NP,
TiO2 NR, and ZnO/TiO2 blend films on quartz substrates.

Figure 3. AFM images of the surface morphology of (a) the ZnO NP
film, (b) the TiO2 NR film, and (c) the blend film of ZnO/TiO2 (with
a scan size of 5 μm × 5 μm and a height bar of 200 nm). SEM images
of the morphology of (d) the ZnO NP film, (e) the TiO2 NR film and
(f) the blend film of ZnO/TiO2 (scale bar: 200 nm).
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cm−2, and FF of 69.4%, corresponding to a PCE of 7.76%.
Meanwhile, the device based on the TiO2 NR cathode buffer
layer showed Voc of 0.740 V, Jsc of 15.23 mA cm−2, FF of 68.0%,
and PCE of 7.66%. When the optimal weight ratio (10:5 mg
mL−1) was used in the blend buffer layer, the device presented
Voc of 0.743 V, Jsc of 16.55 mA cm−2, and FF of 71.7%, giving
PCEs as high as 8.82%. Figure 4c shows the external quantum
efficiency (EQE) data of the optimal device based on the blend
film. JEQE calculated from integration of the EQE spectrum
from 300 to 800 nm is consistent with Jsc obtained from the J−
V results shown above. These results demonstrated the superior
interface properties of the blend film. Table 1 presents all of the

device parameters with similar Voc values. However, Jsc and FF
of devices based on the blend film were improved dramatically
relative to the devices using ZnO NPs and TiO2 NRs as buffer
layers, which represent improvements of 13.5% and 15.0% in
the performance, respectively. From the dark J−V character-
istics in Figure 4b, the device based on the blend film exhibited
excellent diode characteristics with a lower leakage current and
a higher rectification ratio. In contrast, the device based on the
ZnO NP buffer layer presents a higher leakage current,
resulting from the voids in the surface.56 To investigate the
origin of performance enhancement, Rs and Rsh were also
measured. Rs (4.20 Ω cm2) of devices based on the blend film
was lower than those of the ZnO NP film (4.92 Ω cm2) and
TiO2 NR film (5.92 Ω cm2). Moreover, Rsh (1.11 kΩ cm2) of
devices based on the blend film was higher than those of the
ZnO NP film (1.01 kΩ cm2) and TiO2 NR film (0.86 kΩ cm2).
According to the literature,26,54 the decreased Rs and increased
Rsh contributed to the device performance by improving FF and
Jsc.
To further probe the thermal treatment effect of the blend

buffer layer on the device performance of the inverted PSCs,
the photovoltaic devices were studied by changing the
temperature from 80 to 200 °C for 10 min, and the results
are shown in Figure S8 in the SI and summarized in Table 2.

With an increase of the annealing temperature from 80 to 120
°C, Voc, Jsc, and FF of the devices increased and thus PCE
increased from 7.38% to 8.81%. This result was attributed to
the remaining pyridine in the blend film, which obstructs
electron collection and electron transport.44,57 Pyridine was
removed after annealing at 120 °C, resulting in an improvement
of the device performance. However, when the annealing
temperature was further increased to 150 and 200 °C, the
device performance was gradually decreased. The possible
reason was that the contact quality of the buffer layer with the
electrode became poor, leading to slightly higher contact
resistance. To summarize, the appropriate thermal treatment
condition was 120 °C for 10 min.
Figure 5 illustrates the mechanism of electron (e−) transport

in the blend film. Electrons were transferred from the ZnO NP
film to the surface of the collector electrode (e.g., ITO
substrate) through a zigzag pathway, in which the electrons leap
from one NP to the adjacent NP according to the literature.46,58

The increase of the electron-transport pathway results in
increments of bulk resistance and chances of electron−hole
recombination, resulting from the surface defect from ZnO NP
aggregations.26 In the meantime, TiO2 NRs provide a direct
pathway for electron transport, avoiding long-range travel
among ZnO NPs, which supports an effective means for
electron transport.31,32 However, PCE of devices based on the
TiO2 NR film is lower than that of the ZnO NP film, mainly
because of insufficient contact area with the active layer. The
blend film in nanoscale provides both a large surface area to

Figure 4. (a) Illuminated and (b) dark J−V characteristics of ITO/
interlayer/PTB7:PC71BM/MoO3/Al architecture with different cath-
ode buffer layers. (c) EQE data of devices based on PTB7:PC71BM
blends using the ZnO NP, TiO2 NR, and ZnO/TiO2 blend films as
cathode buffer layers measured in air with a larger spot size than the
device area.

Table 1. Summary of the Photovoltaic Parameters of
PTB7:PC71BM Devices Fabricated with Different Cathode
Buffer Layers

interlayer
Voc
[V]

Jsc
[mA cm−2]

FF
[%]

Rs [Ω
cm2]

Rsh [kΩ
cm2]

best/average
PCE [%]a

ZnO 0.732 15.27 69.4 4.92 1.01 7.76/7.42
TiO2 0.740 15.23 68.0 5.92 0.86 7.66/7.62
ZnO/
TiO2

0.743 16.55 71.7 4.20 1.11 8.82/8.58

aThe parameters of PCEs were averaged over six devices. The device
parameter distribution map was presented in Figure S5 in the SI

Table 2. Detailed Parameters of the Device Performance
Using Blend Films with Different Annealing Temperatures

temperature
[°C]

Voc
[V]

Jsc
[mA cm−2]

FF
[%]

Rs [Ω
cm2]

Rsh
[kΩ
cm2]

best/
average
PCE [%]

80 0.720 14.98 68.4 5.96 0.90 7.38/7.25
120 0.743 16.55 71.7 4.20 1.11 8.82/8.58
150 0.743 16.17 71.2 4.36 1.23 8.55/8.43
200 0.734 16.24 69.0 4.28 0.94 8.23/8.04
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promote charge collection and a direct pathway for high-
efficient electron transfer, resulting in the improvement of Jsc
and FF in the devices. The combination of ZnO NPs and TiO2
NRs can make use of both features working as the cathode
buffer layer and facilitate electron transport from the active
layer to the ITO electrode.

4. CONCLUSION
In conclusion, we have developed a new cathode buffer layer
based on a combination of ZnO NPs and TiO2 NRs to take
advantage of their respective features. The optimized blend film
gave a dense film with low roughness. It can facilitate electron
collection and improve the electron-transport efficiency. Also,
high-efficiency inverted PSC was demonstrated based on
PTB7:PC71BM, giving an average PCE of 8.58%, which
increases by 15.6% and 12.6% in comparison with solely the
ZnO NP film (7.42%) and solely the TiO2 NR film (7.62%),
respectively. The results not only indicated that the blend film
was the superior cathode buffer layer but also provided the
method that a combination of inorganic nanomaterials with
particular morphology gave multiple advantages in the
fabrication of high-performance PSCs.
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